Kamis, 16 Desember 2010

INDUKSI ELEKTROMAGNETIK


Induksi elektromagnetik pertama kali dipelajari dan ditemukan oleh Michael Faraday pada tahun 1831. Induksi elektromagnetik atau imbas listrik merupakan pembangkitan energi listrik dari medan magnet.

Induksi elektromagnetik terjadi pada suatu kumparan jika ada perubahan jumlah garis gaya magnet yang dilingkupi setiap saat.

GALVANOMETER adalah alat untuk menyelidiki besar dan arah arus induksi pada suatu rangkaian.

Kita dapat membangkitkan GGL induksi dengan cara berikut.

1. Menggerakkan magnet keluar masuk kumparan
2. Memutar magnet di dekat kumparan
3. Memutar kumparan dalam magnet
4. Memutus-mutus arus listrik yang melalui kumparan.

Jika jumlah garis gaya yang dilingkupi kumparan bertambah, jarum galvanometer menyimpang ke kanan.
Jika jumlah garis gaya yang dilingkupi kumparan berkurang, jarum galvanometer menyimpang ke kiri.

Penyimpangan jarum galvanometer ke kanan dan ke kiri tersebut menunjukkan bahwa GGL induksi yang dihasilkan kumparan berupa tegangan bolak-balik/AC (alternating current).

Jika GGL induksi lebih besar, kuat arus induksi yang timbul juga lebih besar.

Menurut Faraday, besar GGL induksi pada kedua ujung kumparan sebanding dengan laju perubahan fluks magnetik yang dilingkupi kumparan.

Artinya, semakin cepat terjadinya perubahan fluks magnetik, makin besar GGL induksi yang timbul.

Adapun yang dimaksud FLUKS adalah banyaknya garis gaya magnet yang menembus suatu bidang.

Ada berapa faktor yang menentukan besar GGL induksi yang diketahui dari besar penyimpangan jarum galvanometer.

Jika kamu melakukan percobaan ini secara teliti dengan mengubah-ubah jumlah lilitan, kecepatan gerak magnet, dan kekuatan magnet yang digunakan, kamu akan dapat menyimpulkan bahwa besar GGL induksi bergantung pada tiga faktor, yaitu:

1. Jumlah lilitan pada kumparan
2. Kecepatan gerak magnet keluar-masuk kumparan
3. Kekuatan magnet batang yang digunakan.

Induksi elektromagnetik saat ini sudah banyak dimanfaatkan untuk keperluan hidup sehari-hari. Orang pertama yang menyelidiki dan menemukan hal tersebut adalah MICHAEL FARADAY.


1. GENERATOR
Generator (dinamo) merupakan alat yang prinsip kerjanya berdasarkan induksi elektromagnetik. Alat ini pertama kali ditemukan oleh Michael Faraday.
Generator adalah mesin yang mengubah energi kinetik menjadi energi listrik. Energi kinetik pada generator dapat juga diperoleh dari angin atau air terjun. Berdasarkan arus yang dihasilkan, generator dapat dibedakan menjadi dua macam, yaitu gerator AC (alternating current) dan generator DC (direct current). Generator AC menghasilkan arus bolak-balik dan generator DC menghasilkan arus searah. Baik arus bolak-balik maupun searah dapat digunakan untuk penerangan dan alat-alat pemanas.
a. GENERATOR AC
Bagian utama generator AC terdiri atas magnet permanen (tetap), kumparan (solenoida), cincin geser, dan sikat. Pada generator, perubahan garis gaya magnet diperoleh dengan cara memutar kumparan di dalam medan magnet permanen. Karena dihubungkan dengan cincin geser, perputaran kumparan menimbulkan GGL induksi AC. Oleh karena itu, arus induksi yang ditimbulkan berupa arus AC.
GGL induksi yang ditimbulkan oleh generator AC dapat diperbesar dengan cara:
¤ memperbanyak lilitan kumparan,
¤ menggunakan magnet yang lebih kuat,
¤ mempercepat perputaran kumparan, dan
¤ menyisipkan inti besi lunak ke dalam kumparan.
b. GENERATOR DC
Prinsip kerja generator (dinamo) DC sama

LISTRIK STATIS

1 Hukum Coulomb

Tinjaulah interaksi antara dua benda bermuatan yang dimensi geometrinya dapat diabaikan terhadap jarak antar keduanya. Maka dalam pendekatan yang cukup baik dapat dianggap bahwa kedua benda bermuatan tersebut sebagai titik muatan. Charles Augustin de Coulomb(1736-1806) pada tahun 1784 mencoba mengukur gaya tarik atau gaya tolak listrik antara dua buah muatan tersebut. Ternyata dari hasil percobaannya, diperoleh hasil sebagai berikut:

* Pada jarak yang tetap, besarnya gaya berbanding lurus dengan hasil kali muatan dari masing –masing muatan. * Besarnya gaya tersebut berbanding terbalik dengan kuadrat jarak antara kedua muatan. * Gaya antara dua titik muatan bekerja dalam arah sepanjang garis penghubung yang lurus. * Gaya tarik menarik bila kedua muatan tidak sejenis dan tolak menolak bila kedua muatan sejenis. Hasil penelitian tersebut dinyatakan sebagai hukum Coulomb, yang secara matematis:
k adalah tetapan perbandingan yang besarnya tergantung pada sistem satuan yang digunakan. Pada sistem SI, gaya dalam Newton(N), jarak dalam meter (m), muatan dalam Coulomb ( C ), dan k mempunyai harga :
sebagai konstanta permitivitas ruang hampa besarnya = 8,854187818 x 10-12 C2/Nm2. Gaya listrik adalah besaran vektor, maka Hukum Coulomb bila dinyatakan dengan notasi vector menjadi :
Dimana r12 adalah jarak antara q1 dan q2 atau sama panjang dengan vektor r12, sedangkan r12 adalah vektor satuan searah r12. Jadi gaya antara dua muatan titik yang masing-masing sebesar 1 Coulomb pada jarak 1 meter adalah 9 x 109 newton, kurang lebih sama dengan gaya gravitasi antara planet-planet.

Contoh 1:

Muatan titik q1 dan q2 terletak pada bidang XY dengan koordinat berturut-turut(x1,y1) dan (x2,y2), tentukanlah :

a. Gaya pada muatan q1 oleh muatan q2

b. Gaya pada muatan q1 oleh muatan q2

Penyelesaian :

a. Gaya pada muatan q1 oleh muatan q2

b. Gaya pada muatan q2 oleh muatan q1

Dari hasil perhitungan bahwa gayanya akan sama besar namun berlawanan arah.
Prinsip Superposisi

Dalam keadaan Rill , titik-titik muatan selalu terdapat dalam jumlah yang besar. Maka timbullah pertanyaan : apakah interaksi antara dua titik muatan yang diatur oleh Hukum Coulomb dapat dipengaruhi oleh titik lain disekitarnya? Jawabannya adalah tidak, karena pada interaksi elektrostatik hanya meninjau interaksi antar dua buah muatan, jika lebih dari dua buah muatan maka diberlakukan prinsip superposisi (penjumlahan dari semua gaya interaksinya).

Secara matematik, prinsip superposisi tersebut dapat dinyatakan dengan mudah sekali dalam notasi vektor. Jadi misalnya F12 menyatakan gaya antara q1 dan q2 tanpa adanya muatan lain disekitarnya, maka menurut Hukum Coulomb,

Begitu pula interaksi antara q1 dan q3 tanpa adanya muatan q2, dinyatakan oleh :

Maka menurut prinsip superposisi dalam sistem q1, q2 dan q3, gaya total yang dialami q1 tak lain adalah jumlah vector gaya-gaya semula :

2 Medan Listrik

Medan adalah suatu besaran yang mempunyai harga pada tiap titik dalam ruang. Atau secara matematis, medan merupakan sesuatu yang merupakan fungsi kontinu dari posisi dalam ruang. Medan ada dua macam yaitu :

- Medan Skalar, misalnya temperatur, potensial dan ketinggian

- Medan vektor, misalnya medan listrik dan medan magnet

Untuk membahas suatu medan listrik, digunakan pengertian kuat medan, yakni : “Vektor gaya Coulomb yang bekerja pada suatu muatan yang kita lewatkan pada suatu titik dalam medan gaya ini”, dan dinyatakan sebagai E(r). dalam bentuk matematis :

Dengan menggunakan persamaan harus diingat ;

- hubungan ini hanya berlaku untuk muatan sumber berupa titik

- pusat sistem koordinat ada pada muatan sumber

- besaran yang digunakan dalam sistem MKS

- hubungan diatas hanya berlaku dalam vakum atau udara

X.2.1 Kuat Medan Listrik oleh Satu Muatan Titik

Muatan sumber q berupa muatan titik terletak pada vektor posisi r’, sedang titi p pada posisi r. Posisi relatif p terhadap muatan sumber adalah (r-r’), vektor satuan arah SP adalah

Jadi kuat medan listrik E di titik r oleh muatan q adalah
X.2.2 Kuat Medan Listrik oleh Beberapa Muatan Titik

Jika sumber muatan berupa beberapa muatan titik yang berbeda besar dan posisinya, maka kuat medan listrik resultan E (r )adalah penjumlahan masing-masing kuat medan, dimana secara matematis dinyatakan sebagai

Bila ada N buah muatan titik sebagai sumber, dengan muatan sumber q1 yang masing-masing berada pada jarak ri’, maka medan resultan pada vector posisi r adalah :
3 Hukum Gauss
Michael Faraday memperkenalkan cara menggambarkan medan (listrik, magnet, maupun gravitasi) melalui konsep garis gaya (garis medan). Garis gaya adalah garis-garis lengkung dalam medan yang dapat menunjukkan arah serta besarnya E pada setiap titik masing-masing dengan garis singgung dan kerapatan garisnya pada titik yang bersangkutan
Garis-garis gaya berawal pada titik muatan positif dan berakhir pada titik muatan negatif. Diantara titik awal dan titik akhir, garis gaya selalu kontinu dan tidak mungkin berpotongan, kecuali pada titik muatan lain yang terdapat diantaranya
Jumlah garis-garis gaya listrik yang menembus suatu permukaan secara tegak lurus didefenisikan sebagai fluks magnetic . Bila diketahui kuat medan E, maka jumlah garis gaya d yang menembus suatu elemen dA tegak lurus pada E adalah :
Bila permukaan dA tidak tegak lurus maka jumlah garis yang keluar dari dA haruslah
Dimana dA = ndA atau n adalah vektor normal dan sudut antara dA dengan bidang yang tegak lurus pada E. Bila kuat medan pada elemen seluas dA dan E, maka jumlah garis gaya yang keluar dari seluruh permukaan S adalah :
Elemen luas dA berada pada permukaan S harga medan ;listrik E diambil semua titik pada permukaan S.
Fluks listrik total untuk seluruh permukaan
Tanda menyatakan integrasi yang meliputi seluruh permukaan A. Untuk permukaan tertutup, elemen dA tegak lurus permukaan dan arahnya keluar. Fluks total untuk permukaan tertutup
Ternyata ada hubungan yang erat antara fluks listrik pada suatu permukaan tertutup dengan muatan listrik yang berada dalam permukaan tersebut dan hubungan ini dikenal dengan hukum Gauss, yaitu”jumlah garis gaya yang keluar dari suatu permukaan tertutup sebanding dengan jumlah muatan listrik yang dilingkupi oleh permukaan tetutup tersebut. Secara matematis
Dimana S adalah suatu permukaan tertutup qi adalah jumlah muatan yang ada di dalam atau dilingkupi oleh permukaan tetutup S. jadi dengan hukum gauss kita dapat menentukan muatan yang ada di dalam permukaan tetutup, bila kita tahu berapa garis gaya yang keluar dari permukaan tetutup tersebut.

GELOMBANG CAHAYA


Cahaya adalah energi berbentuk gelombang elekromagnetik yang kasat mata dengan panjang gelombang sekitar 380–750 nm.[1]Pada bidang fisika, cahaya adalah radiasi elektromagnetik, baik dengan panjang gelombang kasat mata maupun yang tidak. [2][3]

Cahaya adalah paket partikel yang disebut foton.

Kedua definisi di atas adalah sifat yang ditunjukkan cahaya secara bersamaan sehingga disebut "dualisme gelombang-partikel". Paket cahaya yang disebut spektrum kemudian dipersepsikan secara visual oleh indera penglihatan sebagai warna. Bidang studi cahaya dikenal dengan sebutan optika, merupakan area riset yang penting pada fisika modern.

Studi mengenai cahaya dimulai dengan munculnya era optika klasik yang mempelajari besaran optik seperti: intensitas, frekuensiatau panjang gelombang, polarisasi dan fasa cahaya. Sifat-sifat cahaya dan interaksinya terhadap sekitar dilakukan denganpendekatan paraksial geometris seperti refleksi dan refraksi, dan pendekatan sifat optik fisisnya yaitu: interferensi, difraksi, dispersi,polarisasi. Masing-masing studi optika klasik ini disebut dengan optika geometris (en:geometrical optics) dan optika fisis (en:physical optics).

Pada puncak optika klasik, cahaya didefinisikan sebagai gelombang elektromagnetik dan memicu serangkaian penemuan dan pemikiran, sejak tahun 1838 oleh Michael Faraday dengan penemuan sinar katoda, tahun 1859 dengan teori radiasi massa hitam olehGustav Kirchhoff, tahun 1877 Ludwig Boltzmann mengatakan bahwa status energi sistem fisik dapat menjadi diskrit, teori kuantumsebagai model dari teori radiasi massa hitam oleh Max Planck pada tahun 1899 dengan hipotesa bahwa energi yang teradiasi dan terserap dapat terbagi menjadi jumlahan diskrit yang disebut elemen energi, E. Pada tahun 1905, Albert Einstein membuat percobaanefek fotoelektrik, cahaya yang menyinari atom mengeksitasi elektron untuk melejit keluar dari orbitnya. Pada pada tahun 1924 percobaan oleh Louis de Broglie menunjukkan elektron mempunyai sifat dualitas partikel-gelombang, hingga tercetus teori dualitas partikel-gelombang. Albert Einstein kemudian pada tahun 1926 membuat postulat berdasarkan efek fotolistrik, bahwa cahaya tersusun dari kuanta yang disebut foton yang mempunyai sifat dualitas yang sama. Karya Albert Einstein dan Max Planck mendapatkanpenghargaan Nobel masing-masing pada tahun 1921 dan 1918 dan menjadi dasar teori kuantum mekanik yang dikembangkan oleh banyak ilmuwan, termasuk Werner Heisenberg, Niels Bohr, Erwin Schrödinger, Max Born, John von Neumann, Paul Dirac, Wolfgang Pauli, David Hilbert, Roy J. Glauber dan lain-lain.

Era ini kemudian disebut era optika modern dan cahaya didefinisikan sebagai dualisme gelombang transversal elektromagnetik dan aliran partikel yang disebut foton. Pengembangan lebih lanjut terjadi pada tahun 1953 dengan ditemukannya sinar maser, dan sinar laser pada tahun 1960.

Era optika modern tidak serta merta mengakhiri era optika klasik, tetapi memperkenalkan sifat-sifat cahaya yang lain yaitu difusi dan hamburan.

Efek Doppler


Sebelum melangkah lebih jauh, terlebih dahulu kita bahas hubungan antara frekuensi (f), panjang gelombang (lambda) dan laju gelombang (v)…

Hubungan antara frekuensi (f), panjang gelombang (lambda) dan

laju gelombang (v) bunyi

Dalam pembahasan pembahasan sebelumnya kita sering berhubungan dengan tiga besaran ini, yakni frekuensi (f), panjang gelombang (lambda) dan laju gelombang (v). Frekuensi menyatakan banyaknya getaran yang terjadi selama selang waktu tertentu. Satuan sistem internasional dari frekuensi adalah hertz (hz) = 1/sekon. Dari satuan ini bisa dikatakan bahwa frekuensi menyatakan banyaknya getaran yang terjadi selama 1 sekon atau 1 detik.

Sebaliknya panjang gelombang (lambda) menyatakan jarak dari satu puncak gelombang ke puncak gelombang berikutnya atau jarak dari satu lembah gelombang ke lembah gelombang berikutnya atau jarak dari satu titik ke titik yang bersangkutan pada pengulangan berikutnya. Untuk memperjelas, silahkan amati gambar di bawah (lebih cocok untuk gelombang pada tali atau dawai).

Gelombang bunyi merupakan gelombang tiga dimensi. Gelombang dua dimensi atau tiga dimensi biasa digambarkan dalam bentuk muka gelombang. Untuk kasus ini, panjang gelombang menyatakan jarak dari satu muka gelombang ke muka gelombang berikutnya… Untuk memperjelas, silahkan amati gambar di bawah.

Diandaikan titik hitam pada pusat lingkaran merupakan sumber bunyi. Lingkaran lingkaran berwarna hitam merupakan muka gelombang. Untuk gelombang air, muka gelombang mewakili gundukan atau onggokan atau bukit gelombang atau satu lebar penuh puncak. Untuk gelombang bunyi, muka gelombang mewakili rapatan (sebut saja puncak). Garis yang tegak lurus dengan muka gelombang adalah sinar. Sinar menyatakan arah perambatan gelombang.

Dalam pembahasan mengenai laju gelombang, sudah dijelaskan bahwa laju gelombang mekanik bergantung pada medium yang dilaluinya. Gelombang mekanik tuh gelombang yang membutuhkan medium untuk merambat. Gelombang bunyi termasuk gelombang mekanik karenanya laju gelombang bunyi juga tergantung pada medium yang dilaluinya. Apabila medium yang dilaluinya selalu sama maka laju gelombang bunyi juga selalu tetap. Lajunya berubah hanya jika gelombang bunyi memasuki medium yang lain, misalnya dari udara ke tembok. Jika medium yang dilalui oleh gelombang bunyi adalah udara maka laju gelombang bunyi biasanya berkurang terhadap ketinggian. Ini dikarenakan semakin tinggi udara dari permukaan bumi, maka kerapatan dan tekanan udara semakin kecil. Jika perubahan ketinggian udara tidak terlalu besar maka kita bisa menganggap laju gelombang bunyi selalu tetap.

Hubungan antara frekuensi (f), panjang gelombang (lambda) dan laju gelombang (v) dinyatakan melalui persamaan di bawah :

Keterangan :

Karena laju gelombang selalu tetap maka dari persamaan ini bisa disimpulkan bahwa jika frekuensi bertambah, maka panjang gelombang harus berkurang sehingga hasil kali antara panjang gelombang dan frekuensi selalu tetap. Demikian juga sebaliknya, jika panjang gelombang bertambah maka frekuensi harus berkurang sehingga hasil kali antara panjang gelombang dan frekuensi selalu tetap.

*Gerak relatif

Kasus pertama, sepeda motor A bergerak dengan laju 100 km/jam, sepeda motor B juga bergerak dengan laju 100 km/jam. Ini artinya sepeda motor A bergerak sejauh 100 km selama 1 jam. Demikian juga sepeda motor B bergerak sejauh 100 km selama 1 jam. Laju kedua sepeda motor sama dan kedua sepeda motor ini bergerak searah…. Menurut orang yang berdiri di tepi jalan, kedua sepeda motor tersebut bergerak ya ? yupz… menurut orang yang berdiri di tepi jalan, kedua sepeda motor tersebut bergerak dengan laju 100 km/jam relatif terhadap permukaan bumi sebagai kerangka acuan pengamatan

Sekarang bagaimana dengan orang yang sedang mengendarai sepeda motor A. Menurutnya, sepeda motor B bergerak atau tidak ? Orang yang mengendarai sepeda motor A melihat sepeda motor B sedang diam relatif terhadapnya… nah, bagaimana dengan orang yang mengendarai sepeda motor B. Menurutnya sepeda motor A bergerak atau tidak ? Orang yang mengendarai sepeda motor B juga melihat sepeda motor A sedang diam relatif terhadapnya… Ini karena kedua sepeda motor tersebut bergerak dengan kecepatan konstan (lajunya sama, yakni 100 km/jam dan arah geraknya juga sama).

Kasus kedua, bagaimana jika situasinya kita ubah… arah gerak kedua sepeda motor berlawanan. Andaikan saja lintasannya lurus atau jalan raya nya lurus… sepeda motor A bergerak dari garis start menuju garis finish, sebaliknya sepeda motor B bergerak dari garis finish menuju garis start. Laju kedua sepeda motor tidak sama. Misalnya sepeda motor A bergerak dengan laju 100 km/jam sedangkan sepeda motor B bergerak dengan laju 20 km/jam.

Orang yang berdiri di tepi jalan tetap melihat kedua sepeda motor bergerak, relatif terhadap permukaan bumi sebagai kerangka acuan pengamatan.. bedanya, ia melihat sepeda motor A bergerak dengan laju 100 km/jam relatif terhadap permukaan bumi sebagai kerangka acuan pengamatan. Sebaliknya ia melihat sepeda motor B bergerak dengan laju 20 km/jam relatif terhadap permukaan bumi sebagai kerangka acuan pengamatan. Jadi menurutnya sepeda motor A lebih kencang dibandingkan dengan sepeda motor B…

Bagaimana dengan orang yang mengendarai sepeda motor A, menurutnya sepeda motor B bergerak atau tidak ? jika bergerak, bergerak dengan laju berapa ? Menurut orang yang mengendarai sepeda motor A, sepeda motor B bergerak mendekatinya dengan laju 100 km/jam + 20 km/jam = 120 km/jam relatif terhadap sepeda motor A sebagai kerangka acuan pengamatan. Bagaimana dengan orang yang mengendarai sepeda motor B ? orang yang mengendarai sepeda motor B juga melihat sepeda motor A bergerak mendekatinya dengan laju 120 km/jam relatif terhadap sepeda motor B sebagai kerangka acuan pengamatan. Ingat ya, keduanya bergerak saling mendekati, sastunya dari garis start menuju garis finish, satunya dari garis finish menuju garis start… Pahami perlahan-lahan ya…

Kasus ketiga, situasinya kita ubah… Andaikan saja lintasannya lurus atau jalan raya nya lurus… arah gerak kedua sepeda motor sama. Laju kedua sepeda motor tidak sama. Misalnya sepeda motor A bergerak dengan laju 100 km/jam sedangkan sepeda motor B bergerak dengan laju 20 km/jam. Bedanya, sepeda motor A mulai bergerak dari garis start, sedangkan sepeda motor B mulai bergerak dari ratusan meter dari garis start… arah gerak kedua sepeda motor sama, yakni menuju garis finish.

Bagaimana dengan orang yang mengendarai sepeda motor A, menurutnya sepeda motor B bergerak atau tidak ? jika bergerak, bergerak dengan laju berapa ? Menurut orang yang mengendarai sepeda motor A, sepeda motor B bergerak mendekatinya (seolah-olah sepeda motor B bergerak mundur) dengan laju 100 km/jam – 20 km/jam = 80 km/jam relatif terhadap sepeda motor A sebagai kerangka acuan pengamatan. Bagaimana dengan orang yang mengendarai sepeda motor B ? orang yang mengendarai sepeda motor B melihat sepeda motor A bergerak maju mendekatinya dengan laju 100 km/jam – 20 km/jam = 80 km/jam relatif terhadap sepeda motor B sebagai kerangka acuan pengamatan.

Efek Doppler pada gelombang bunyi

Pada bagian pengantar, gurumuda menjelaskan efek doppler menggunakan contoh balap sepeda motor. Ketika sepeda motor (sumber bunyi) mendekati orang yang shooting (pendengar), frekuensi bunyi sepeda motor meninggi. Sebaliknya ketika sepeda motor (sumber bunyi) menjahui orang yang shooting (pendengar), frekuensi bunyi sepeda motor menurun. Perubahan frekuensi bunyi yang terjadi pada saat balap sepeda motor hanya merupakan salah satu contoh saja… masih banyak contoh lain.

Pada contoh balap sepeda motor di atas, perubahan frekuensi bunyi terjadi ketika sumber bunyi bergerak mendekati pendengar atau sumber bunyi bergerak menjahui pendengar… Perlu diketahui bahwa perubahan frekuensi bunyi juga terjadi jika pendengar bergerak mendekati sumber bunyi atau pendengar bergerak menjahui sumber bunyi. Misalnya peristiwa balap motor kita balik… Dalam hal ini sepeda motor diam, sedangkan orang yang shooting bergerak… Nah, ketika orang yang shooting bergerak mendekati sepeda motor, orang tersebut mendengar nada atau frekuensi bunyi motor meninggi.. sebaliknya ketika orang yang shooting bergerak menjahui sepeda motor, orang tersebut mendengar nada atau frekuensi bunyi motor menurun.

Efek Doppler berlaku untuk semua gelombang, baik gelombang mekanik maupun gelombang elektromagnetik; baik gelombang satu dimensi maupun gelombang tiga dimensi. Jika pada gelombang bunyi kita menggunakan kata “pendengar” dan “sumber bunyi” maka untuk Efek doppler pada gelombang lain, kita bisa menggunakan kata “pengamat” dan “sumber gelombang”. Bisa dikatakan bahwa efek Doppler merupakan istilah yang digunakan untuk menggambarkan perubahan frekuensi gelombang akibat adanya gerak relatif antara sumber gelombang dan pengamat. Walaupun akhirnya berlaku pada semua gelombang, fenomena efek Doppler pertama kali dideteksi pada gelombang bunyi oleh almahrum Christian Andreas Doppler (1803 – 1853), mantan fisikawan Austria. Beliau mengumumkan karyanya mengenai efek Doppler pada tahun 1842. ??? tempoe doeloe ??? ;)

Sekian ulasan ngalor ngidulnya… Sekarang mari kita menyelam lebih dalam.. emang laut ? Kita bahas satu per satu kasusnya.. kayak di pengadilan saja.. huft.. Terlebih dahulu kita tinjau kasus di mana sumber bunyi dan pendengar diam.

Pendengar dan sumber bunyi diam (relatif terhadap permukaan bumi sebagai kerangka acuan)

Titik berwarna biru mewakili sumber bunyi yang sedang diam. Andaikan saja sumber bunyi adalah sebuah sepeda motor balap.. mesin motor sudah dinyalakan tapi motor tidak bergerak. Anggap saja A dan B adalah pendengar bunyi. Garis garis lengkung berwarna hitam pada gambar di atas merupakan muka gelombang. Perhatikan bahwa sumber bunyi dan kedua pendengar diam relatif terhadap permukaan bumi sebagai kerangka acuan. Yang bergerak hanya gelombang bunyi saja… Sumber bunyi memang diam tetapi sumber bunyi memancarkan gelombang bunyi yang bergerak ke segala arah melalui udara. Sebagian gelombang bunyi ini bergerak menuju pendengar…

Hubungan antara frekuensi (f), panjang gelombang (lambda) dan laju gelombang (v) dinyatakan melalui persamaan :

Untuk menentukan frekuensi bunyi yang didengar oleh pendengar yang diam, persamaan ini diobok2 menjadi :

Keterangan :

Persamaan ini hanya berlaku jika sumber bunyi, medium yang dilalui gelombang bunyi (misalnya udara) dan pendengar (si B), diam relatif terhadap permukaan bumi sebagai kerangka acuan. Yang bergerak hanya gelombang bunyi saja… Btw, kalau udara diam tuh maksudnya bagaimanakah ? maksudnya tidak ada angin

Bagaimana jika ada angin ? tergantung arah angin… jika arah angin sama dengan arah rambat gelombang bunyi, yakni menuju pendengar maka laju gelombang bunyi = laju gelombang bunyi ketika tidak ada angin + laju angin. Jika arah angin berlawanan dengan arah rambat gelombang bunyi, maka laju gelombang bunyi = laju gelombang bunyi ketika tidak ada angin – laju angin. Bagaimana jika arah angin tegak lurus dengan arah rambat gelombang ? tinggal dicari saja komponen laju angin yang searah dengan arah rambat gelombang. Laju gelombang bunyi di udara = laju gelombang bunyi ketika tidak ada angin + komponen laju angin yang searah dengan perambatan gelombang… Bagaimana jika laju angin berlawanan dengan arah rambat gelombang bunyi dan laju angin juga lebih besar dari laju gelombang bunyi ketika tidak ada angin ? Kemungkinan orang tersebut tidak mendengar bunyi…

Bagaimana jika salah satu pendengar, andaikan saja si B, bergerak menuju sumber bunyi yang diam ?

Next level…

Pendengar bergerak mendekati sumber bunyi (pendengar bergerak, sumber bunyi diam relatif terhadap permukaan bumi sebagai kerangka acuan)

Laju gerak gelombang bunyi kita beri lambang vb, sebaliknya laju gerak pendengar kita beri lambang vp. Apabila pendengar diam maka laju gelombang bunyi relatif terhadap pendengar adalah vb. Ini adalah laju gelombang bunyi pada medium udara (udara dianggap diam). Sebaliknya jika pendengar juga bergerak menuju gelombang bunyi, maka laju gelombang bunyi relatif terhadap pendengar bukan lagi vb tetapi berubah menjadi vb + vp. Pahami perlahan-lahan… bandingkan dengan contoh gerak relatif, kasus kedua.

Dengan demikian, frekuensi bunyi yang didengar oleh pendengar yang sedang bergerak menuju sumber bunyi yang diam adalah :

Keterangan :

Persamaan 2a dan 2b hanya berlaku jika sumber bunyi dan medium yang dilalui gelombang bunyi (misalnya udara) diam relatif terhadap permukaan bumi sebagai kerangka acuan. Yang bergerak hanya gelombang bunyi dan pendengar (si B) saja… Dalam hal ini, pendengar bergerak mendekati sumber bunyi.

Perhatikan persamaan 2b di atas… Jika vp = 0 maka vp/vb = 0. Dengan demikian, 1 + vp/vb = 1 + 0 = 1. Persamaan 2b akan berubah menjadi :

Ini artinya…. Jika laju pendengar (vp) = 0 maka persoalannya kembali seperti level sebelumnya Bagaimana jika laju pendengar (vp) = laju gelombang bunyi (vb) ?

Ini artinya… pahami sendiri ya

Bagaimana jika pendengar, andaikan saja si B, bergerak menjahui sumber bunyi yang diam ?

Pendengar bergerak menjahui sumber bunyi (pendengar bergerak, sumber bunyi diam relatif terhadap permukaan bumi sebagai kerangka acuan)

Laju gerak gelombang bunyi kita beri lambang vb, sebaliknya laju gerak pendengar kita beri lambang vp. Apabila pendengar diam maka laju gelombang bunyi relatif terhadap pendengar adalah vb. Ini adalah laju gelombang bunyi pada medium udara (udara dianggap diam). Sebaliknya jika pendengar juga bergerak menjahui gelombang bunyi, maka laju gelombang bunyi relatif terhadap pendengar bukan lagi vb tetapi berubah menjadi vb - vp. Pahami perlahan-lahan… bandingkan dengan contoh gerak relatif, kasus ketiga.

Dengan demikian, frekuensi bunyi yang didengar oleh pendengar yang sedang bergerak menuju sumber bunyi yang diam adalah :

Keterangan :

Persamaan 3a dan 3b hanya berlaku jika sumber bunyi dan medium yang dilalui gelombang bunyi (misalnya udara) diam relatif terhadap permukaan bumi sebagai kerangka acuan. Yang bergerak hanya gelombang bunyi dan pendengar (si B) saja… Dalam hal ini, pendengar bergerak menjahui sumber bunyi.

Bagaimana jika sumber bunyi yang bergerak mendekati pendengar ?

Next level….

Sumber bunyi bergerak mendekati pendengar (sumber bunyi bergerak, pendengar diam, relatif terhadap permukaan bumi sebagai kerangka acuan)

Ketika sumber bunyi bergerak mendekati pendengar B, sumber bunyi memancarkan gelombang bunyi dengan frekuensi yang sama seperti ketika sumber bunyi tersebut diam. Gelombang bunyi yang dipancarkan oleh sumber bunyi ini bergerak ke segala arah, sebagiannya bergerak menuju pendengar B. Karena sumber bunyi juga bergerak mendekati pendengar B maka sumber bunyi ini menyusul gelombang yang bergerak menuju pendengar B tadi. Bayangkan saja seperti anda melempari batu ke arah depan ketika sedang mengendarai sepeda motor… Dalam hal ini, arah gerak motor anda sama dengan arah lemparan batu. Jadi anda menyusul batu yang dilempar tadi…

Karena sambil memancarkan gelombang bunyi, sumber bunyi juga menyusul gelombang yang dipancarkannya tadi maka panjang gelombang bunyi memendek, sebagaimana ditunjukkan pada gambar di atas… Laju gelombang bunyi selalu tetap sehingga jika panjang gelombang memendek maka frekuensi meninggi. Si B akan mendengar nada atau frekuensi bunyi meninggi… Dengan kata lain, muka gelombang yang melewati si B selama selang waktu tertentu menjadi bertambah, dibandingkan ketika sumber bunyi diam. Perhatikan bahwa frekuensi bunyi yang dipancarkan oleh sumber bunyi selalu tetap alias tidak meninggi. Hanya frekuensi bunyi yang didengar oleh pendengar B saja yang meninggi…

Sekarang kita obok-obok persamaan yang digunakan untuk menentukan frekuensi bunyi yang didengar oleh pendengar B.

Tataplah gambar kusam di atas dengan penuh kelembutan… mula-mula sumber bunyi diam di titik 1. Ketika sedang diam di titik 1, sumber bunyi memancarkan muka gelombang C. Setelah satu periode (T), sumber bunyi mulai bergerak… ketika mulai bergerak, sumber bunyi memancarkan muka gelombang A. Setelah bergerak selama satu periode (T) atau sejauh s2, sumber bunyi tiba di titik 2. Pada saat yang sama, sumber bunyi memancarkan muka gelombang B. Ketika sumber bunyi memancarkan muka gelombang B, muka gelombang A sudah tiba di titik 3, demikian juga muka gelombang C sudah tiba di titik 4.

Jarak antara muka gelombang B dan A lebih pendek dibandingkan dengan jarak antara muka gelombang A dan C. Jarak antara muka gelombang A dan C itu jarak “normal” jika sumber bunyi diam. Sebaliknya, jarak antara muka gelombang B dan A lebih pendek karena setelah sumber bunyi memancarkan muka gelombang A, sumber bunyi mulai bergerak menyusul muka gelombang A. Perlu diketahui bahwa gambar di atas lebih tepat jika laju sumber bunyi lebih kecil dari laju gelombang bunyi. Pada umumnya efek Doppler terdengar ketika laju sumber bunyi lebih kecil dari laju gelombang bunyi. Jika laju sumber bunyi sama atau lebih besar dari laju gelombang bunyi maka yang terdengar pertama kali adalah ledakan sonik, setelah itu baru efek Doppler. Ini akan dibahas kemudian… Ok, kembali ke Doppler

Persamaan 3a dan 3b bisa digunakan untuk menentukan perubahan panjang gelombang.

Frekuensi bunyi yang baru atau frekuensi bunyi yang didengar oleh pendengar ketika didekati sumber bunyi :

Keterangan :

Persamaan 4 digunakan untuk menentukan frekuensi bunyi yang baru atau frekuensi bunyi yang didengar oleh pendengar ketika didekati sumber bunyi.

Perhatikan persamaan 4 di atas. Jika laju sumber bunyi (vs) = laju gelombang bunyi (v) maka vs/v = 1. Jika demikian maka penyebut akan bernilai nol (1 – 1 = 0). Karena penyebut bernilai nol maka f bagi nol = tak berhingga… Dengan kata lain, jika laju sumber bunyi = laju gelombang bunyi maka frekuensi bunyi yang baru bernilai tak berhingga. Frekuensi tak berhingga maksudnya bagaimanakah ? frekuensi bunyi yang bisa didengar manusia sekitar 20 hz – 20.000 hz… nilai frekuensi di bawah 20 hz atau di atas 20.000 hz tidak bisa didengar oleh manusia… Jadi apakah ketika frekuensi bunyi yang baru bernilai tak berhingga maka bunyi tersebut tidak bisa didengar oleh manusia ? Jika kita hanya melihat dari sisi matematisnya saja maka kita akan mengatakan Iya.Karenanya alangkah tidak baiknya jika terlebih dahulu kita lihat kondisi di mana laju sumber bunyi = laju gelombang bunyi.

Jika laju sumber bunyi sama dengan laju gelombang bunyi maka akan ada penumpukan puncak gelombang bunyi atau penumpukan muka gelombang bunyi (panjang gelombang bunyi = nol – frekuensi tak berhingga), sebagaimana ditunjukkan pada gambar di bawah… titik berwarna merah mewakili sumber bunyi.

Ini berarti puncak atau rapatan gelombang bunyi tersebut saling tumpang tindih alias bersuperposisi… Akibatnya dihasilkan gelombang bunyi resultan yang mempunya amplitudo besar dan posisi molekul molekul udara sangat rapat (kerapatan bertambah, tekanan udara juga bertambah)… karena amplitudo dan kerapatan semakin besar (tekanan udara juga semakin besar) maka intensitas juga semakin besar. Intensitas bunyi berkaitan dengan keras lemahnya bunyi… semakin besar intensitas maka bunyi terdengar semakin keras. Bisa disimpulkan bahwa penumpukan puncak puncak gelombang bunyi tersebut akan menghasilkan bunyi yang amat sangat keras sekali… orang yang mendengar bisa meninggal dunia. Telinga amat sangat sakit dan super pekak Dalam fisika dikenal dengan julukan ledakan sonik (sonic boom). Bagaimana jika laju sumber bunyi lebih besar dari laju gelombang bunyi ? akan dihasilkan gelombang kejut dan ledakan sonik.. Kondisinya seperti gambar di bawah…

Selengkapnya dibahas pada episode berikutnya… ok, kembali ke Doppler

Sumber bunyi bergerak menjahui pendengar (sumber bunyi bergerak, pendengar diam, relatif terhadap permukaan bumi sebagai kerangka acuan)

Sebelumnya sudah dibahas kondisi di mana sumber bunyi bergerak mendekati pendengar B. Sekarang kita bahas kondisi di mana sumber bunyi bergerak menjahui pendengar A.

Ketika sumber bunyi bergerak menjahui pendengar A, sumber bunyi memancarkan gelombang bunyi dengan frekuensi yang sama seperti ketika sumber bunyi tersebut diam. Gelombang bunyi yang dipancarkan oleh sumber bunyi ini bergerak ke segala arah, sebagiannya bergerak menuju pendengar A. Karena sumber bunyi bergerak menjahui pendengar A maka sumber bunyi juga menjahui gelombang yang bergerak menuju pendengar A tadi. Bayangkan saja seperti anda melempari batu ke arah belakang ketika sedang mengendarai sepeda motor… Dalam hal ini, arah gerak motor anda berlawanan dengan arah lemparan batu.

Karena sambil memancarkan gelombang bunyi, sumber bunyi juga menjahui gelombang yang dipancarkannya tadi maka panjang gelombang bunyi memanjang, sebagaimana ditunjukkan pada gambar di atas…

Laju gelombang bunyi selalu tetap sehingga jika panjang gelombang memanjang maka frekuensi menurun. Si A akan mendengar nada atau frekuensi bunyi menurun… Dengan kata lain, muka gelombang yang melewati si A selama selang waktu tertentu menjadi berkurang, dibandingkan ketika sumber bunyi diam. Perhatikan bahwa frekuensi bunyi yang dipancarkan oleh sumber bunyi selalu tetap alias tidak menurun. Hanya frekuensi bunyi yang didengar oleh pendengar A saja yang menurun…

Sekarang kita obok-obok persamaan yang digunakan untuk menentukan frekuensi bunyi yang didengar oleh pendengar A.

Mula-mula sumber bunyi diam di titik 1. Ketika sedang diam di titik 1, sumber bunyi memancarkan muka gelombang C. Setelah satu periode (T), sumber bunyi mulai bergerak… ketika mulai bergerak, sumber bunyi memancarkan muka gelombang A. Setelah bergerak selama satu periode (T) atau sejauh s2, sumber bunyi tiba di titik 2. Pada saat yang sama, sumber bunyi memancarkan muka gelombang B. Ketika sumber bunyi memancarkan muka gelombang B, muka gelombang A sudah tiba di titik 3, demikian juga muka gelombang C sudah tiba di titik 4.

Jarak antara muka gelombang B dan A lebih panjang dibandingkan dengan jarak antara muka gelombang A dan C. Jarak antara muka gelombang A dan C itu jarak “normal” jika sumber bunyi diam. Sebaliknya, jarak antara muka gelombang B dan A lebih panjang karena setelah sumber bunyi memancarkan muka gelombang A, sumber bunyi mulai bergerak menjahui muka gelombang A.

Perubahan panjang gelombang :

Persamaan a dan b bisa digunakan untuk menentukan perubahan panjang gelombang.

Frekuensi bunyi yang baru atau frekuensi bunyi yang didengar oleh pendengar ketika dijahui sumber bunyi :

Keterangan :

Persamaan 3 digunakan untuk menentukan frekuensi bunyi yang baru atau frekuensi bunyi yang didengar oleh pendengar ketika dijahui sumber bunyi.

Keempat persamaan frekuensi bunyi yang baru di atas ditulis lagi di bawah :

Penerapan efek doppler pada gelombang bunyi dalam kehidupan sehari-hari dibahas pada postingan khusus mengenai penerapan gelombang bunyi dalam kehidupan. Lebih banyak penerapan efek Doppler pada gelombang elektromagnetik. Akan dibahas secara khusus.